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Abstract

In this paper we study asymptotic distribution estimate of the autocovariance function
B (49, t) of homogeneous and isotropic vector-valued random fields E(P,t).

Different problems of the theory of automatic control, radio physics, geochemistry, the
meteorologies result in necessity to consider stochastic functions time-dependent and a point on an
sphere. For want of it it appears natural the suppositions about a homogeneous in time variable and
isotropic on a space variable of random fields. The users of many statistical application software
packages apply to an estimation of spectral characteristic of random processes and fields of statistics
such as a smoothed periodogram, statistics such as average periodograms, that is used thes paper.

Let 5 (P,t),z‘ € §, a homogeneous on time variable and isotropic on a space variable column
vector-valued random field with components &, (P,t), a=1,.,ron S, xZ, 6 where §, — is the unit
sphere of the n-rd dimensional space R" and Z =0,*1,..., which has finite second order moment

and which for each ¢ is continuous in quadratic mean (q.m.) . £ 5 (P,t) = u, 1t — unknown.
E[E(P,t+5)— u][E(Q,s)— u] = B(O,1), where 6- is the angular distance between P u Q.
It is known that f (P,t) can be represented as (see Yadrenko (!1983),) Korolyuk(1985))
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where the S,ln(P) are the orthonormal spherical harmonics of degree m,
(m+n-3)!
(n—2)!m!
is the number of linearly independent spherical harmonics of degree m,
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and {F'm (A),m >0} is a sequence of real nondecreasing function such that

Zh(m,n)J.di,iFm (+00) < +00,i =1,...,7
m=0 _r

5, being the Kronecker delta.

The autocovariance matrix function B(6,t) can be written as
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where ¢, P /F(%) is the area of the surface §, and theC, (x),(v#0) are the
Gegenbauer polynomials.(see Beteman H.,Erdelyi A.(1953))

We shall assume that & (p  ,)is stationary in time and homogeneous and isotropic in space
in the strict sense, i.e. for any finite sequence of points (P,?),...,(P,,#,) the distribution of
E(g(P)ut, +1)---E(g(P,).1, +1) does not depend on g and ¢ forall g €G and ¢,k =12,... where
G is the group of rotations of R" about the origin.

The following conditions let are executed:
For each t (E(P,t): P e s, }is continuous in q.m.

Let ‘EE(P]’I])"'E(PkStk)‘Smk(tl""ﬂtk) uniformly in P,,...,P, forall 7,....¢,;k=12,....

For (x,,x, ...x, ) we denote its joint cumulant of order k by cum(x,,...,x; ).

Condition B. For a given ¢ =2 0

Dol [ cumtE (Pt 1, ) (Pt +u, ), E(P 1)} ity < C, <00

uniformly in P, P,,...,B for =12, ., k—landk=23,. .
This condition is analogous to the one made by Brillinger (1969,1970).
Let field & (P, ¢ ) is observed for all points of S, and on time /=0,1,...,7-1.

For any ¢ we define
T-1
A (D) =) &, (0e™
t=0
The periodogram
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(A ) The * - denotes line-

vector. This estimate is not consistent. In order to construct a consistent estimator we consider a
bounded even function H (¢ ),—7 < a < 7 ,that has a bounded derivative and such that

is an asymptotically unbiased estimator of the spectral density _ , f

m

jEH(a)da =1

For a sequence of positive numbers 4, we set H'”(a)= A;'H(A;'a) We define an
estimator for the spectral density in the following manner:
w1V = [HD (@), 1) (A -a)da

As an estimate of the autocovariance function of a random field the following statistics is

considered:
n-2

B(T) Ht Zh(m ) (cosé’)ﬂ ()
" C,f (1)

4
where _, rl(t) = Je[“’a,bff)(a)da, for each 7', N, is a positive integer and N, —> o0 as
T — «©,0€e[0,r].
We assume that second-order cumulant spectra of & (P,¢) satisfy



ihz(m,n)ffmz (@)da <»

and the fourth-order cumulant spectra are such that
2 27w

i h(m,n)h(q,n)j ng,q(a,—a,ﬂ)dadﬂ <.

m,q=0 0

Theorem: Under the above assumptions the estimate B™(0,r) is
asymptotically unbiased and asymptotically consistent.
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